
LA-UR-22-30927
Approved for public release; distribution is unlimited.

Title: Coincident Capture through Post-processing PTRAC

Author(s): Rising, Michael Evan
Bolding, Simon R.

Intended for: 2022 MCNP User Symposium, 2022-10-17/2022-10-21 (Los Alamos, New
Mexico, United States)

Issued: 2022-10-25 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

Coincident Capture through Post-
processing PTRAC

Michael E. Rising and Simon Bolding, XCP-3, LANL

2022 MCNP® User Symposium

October 17–21, 2022

LA-UR-22-30927

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

Slide Coincident-Capture-2 of 28

MCNP® Trademark

MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad
National Security, LLC, manager and operator of Los Alamos National Laboratory.
Any third party use of such registered marks should be properly attributed to Triad
National Security, LLC, including the use of the ® designation as appropriate.
I Please note that trademarks are adjectives and should not be pluralized

or used as a noun or a verb in any context for any reason.
I Any questions regarding licensing, proper use, and/or proper attribution

of Triad National Security, LLC marks should be directed to
trademarks@lanl.gov.

Slide Coincident-Capture-3 of 28

Thanks and Acknowledgements

This work is supported by the LANL ISTI Program.

This work is supported by the Department of Energy through Los Alamos National
Laboratory (LANL) operated by Triad National Security, LLC, for the National
Nuclear Security Administration (NNSA) under Contract No.
89233218CNA000001.

Slide Coincident-Capture-4 of 28

Outline

Motivation

PTRAC Updates: Features and Format

Development of Nuclear Safeguards Examples

Coincident Counting through PTRAC

Summary

Slide Coincident-Capture-5 of 28

Particle Track Output (PTRAC) Usage

I PTRACis often used for advanced detector responses, where correlated
or time-dependent analysis is needed

I The PTRAC�le is used as input for custom post-processing software
I Examples include Advanced detector response simulation framework

DRiFT [1]
I Subcritical multiplicity experiments

Subcritical Multiplication Analysis and Visualization

!"#$%&'&$()*+,-. +())

/")'&0)&$&'1*2,',$'3%4

Slide Coincident-Capture-6 of 28

PTRAC Updates: Features and
Format

Slide Coincident-Capture-7 of 28

PTRACInput Card (1)

I For separate output �le printing of all or partial (�ltered) histories and
events from a transport calculation

I Allows greater user control for specialized result processing when
standard and special treatment tallies are inadequate

I Use PTRACinput card and keyword-value pairs (more on next slide):

keyword value(s) description

file bin , asc, hdf5 bin =binary, asc=ASCII, hdf5 =HDF5

max integer maximum of number of events written

write pos , all pos =x,y,z particle info only,
all =x,y,z,u,v,w,wgt,tme,erg info

coinc col print tally scores by history (need tally keyword
also)

flushnps integer controls write frequency for HDF5 output �le
type

red = deprecated in MCNP6.3, blue = new in MCNP6.3

Slide Coincident-Capture-8 of 28

PTRACInput Card (2)

I Event-based �ltering on the PTRACinput card:

keyword value(s) description

event src , bnk, sur , col ,
ter , cap

event-type �lter: src =source, bnk=bank,
sur =surface, col =collision, ter =termination,

cap=coincident capture

filter PBL particle state variables

type P particle-type �lter

I History-based �ltering on the PTRACinput card:

keyword value(s) description

nps integer range of nps history numbers

cell integer list of cell numbers

surface integer list of surface numbers

tally integer list of tally numbers

value �oat list of tally contribution thresholds

red = deprecated in MCNP6.3

Slide Coincident-Capture-9 of 28

HDF5-formatted PTRACin MCNP6.3

I HDF5 PTRACsimulations can be executed in parallel
I Removes a signi�cant computational bottleneck
I Even in serial, HDF5 PTRACis faster for large problems

I Organized output structure makes post-processing more accessible
I Reduces processing errors of legacy formats
I More �exible, so it can be extended in the future

I The MCNP6.3 release notes provide more detail on the feature
I Several PTRACbug �xes
I Legacy formats and two infrequently used features are DEPRECATED
I Improved interface for event-wise cell and surface features

Slide Coincident-Capture-10 of 28

HDF5 is Binary, but Easily Interrogated

I New HDF5 PTRAC�le format described in MCNP6.3 user manual

I Each group (e.g., /ptrack/) is like a �lesystem directory
I Each dataset (e.g., Bank) is just an array of data that can be processed
I Interrogate the HDF5 �le from the command line:

I h5ls and h5dumpfor terminal usage

h5ls -r sf_ptrac_mcnp63.p.h5
/ Group
/config_control Group
/problem_info Group
/ptrack Group
/ptrack/Bank Dataset {0/Inf}
/ptrack/Collision Dataset {67170/Inf}
/ptrack/RecordLog Dataset {67170/Inf}
/ptrack/Source Dataset {0/Inf}
/ptrack/SurfaceCrossing Dataset {0/Inf}
/ptrack/Termination Dataset {0/Inf}

Slide Coincident-Capture-11 of 28

Compound-data Structure: Layout

Collision event compound data type �elds:

Slide Coincident-Capture-12 of 28

Compound Data Structure: HDFView

Slide Coincident-Capture-13 of 28

Access to HDF5 PTRAC Data

MCNPTools

I Version 3.8 released with MCNP6.2
I Latest version, supports both

legacy and HDF5 formats, now
available as open source at
https://github.com/lanl/mcnptools

I Example below:

Direct access through HDF5 API's

I Of�cial APIs: C, C++, Fortran, Java
I Unof�cial APIs: Julia, Matlab,

Mathematica, Perl, Python, R
I Python h5py example to follow

MCNPTools PTRAC Processing Example

Slide Coincident-Capture-14 of 28

Development of Nuclear
Safeguards Examples

Slide Coincident-Capture-15 of 28

Safeguards Example for Simple Neutron Detector
Coincident Counting (1)

I With our LANL nuclear safeguards
colleagues in NEN-1, we developed a
new MCNP safeguards-speci�c class

I Exercises include a simpli�ed neutron
detector system for coincident neutorn
counting
I 4 He-3 tubes
I High Density Polyethylene (HDPE)
I Cf-252 spontaneous �ssion (SF)

source
I Example safeguards.inp MCNP6.3

input �le is attached

Slide Coincident-Capture-16 of 28

Safeguards Example for Simple Neutron Detector
Coincident Counting (2)

I Consider the options on how a coincident neutron counting simulation
can be done

1. Using the pulse-height tally capture (CAP) special treatment option
I Note that this option automatically turns off implicit capture

2. Using PTRACdata card that writes all particle data
I Need to turn off implicit capture (otherwise capture events will

NEVER occur and appear in a PTRAC�le)
I Could use an event-based collision �lter (i.e., event=col)
I Could use an event-based particle cell �lter (i.e.,

filter=21,24,cel) within the detector cells

Listing 1: Safeguards MCNP6.3 PTRAC Card
1 c MCNP6 .3 ptrac card
2 c
3 ptrac fi le=hdf5 f lushnps =1 e6
4 event =col f i l ter =21 ,24 , cel

Slide Coincident-Capture-17 of 28

Coincident Counting through
PTRAC

Slide Coincident-Capture-18 of 28

Safeguards Example for Simple Neutron Detector
Coincident Counting (1)

Listing 2: Coincident Counting Python (ptrac_coinc.py.txt attached) Example: Main
1 def main () :
2 """ Main execut ion script """
3
4 parser = parse_args ()
5 args = parser . parse_args ()
6
7 if args . verbose == 1:
8 level = logging . INFO
9 elif args . verbose > 1:

10 level = logging . DEBUG
11 else :
12 level = logging . WARNING
13 logging . basicConf ig (format ="%(levelname)s: %(message)s" , level = level)
14 logging . debug (args)
15
16 ptrac_f i le = {"name": args . input , " fmt " : args . format }
17 history_f i l ter = {" cel ls " : args .cells , " zas " : args . isotopes , " rxns " : args . react ions }
18 t imes_f i l ter = {" predelay_t ime ": args .predelay , " gate_width " : args . gatewidth }
19
20 print (" \ nIndividual history coincident counting results via MCNPTools ")
21 count_histogram = process_ptrac_via_mcnptools (
22 ptrac_fi le , history_f i l ter , t imes_f i l ter
23)
24 output_counts (count_histogram , f i le_pref ix =f" { args . output } _mcnptools ")
25
26 print (" \ nAll histor ies coincident count ing results via h5py ")
27 count_histogram = process_ptrac_via_h5py (ptrac_fi le , history_f i l ter , t imes_f i l ter)
28 output_counts (count_histogram , f i le_pref ix =f" { args . output } _h5py ")

Slide Coincident-Capture-19 of 28

Safeguards Example for Simple Neutron Detector
Coincident Counting (2)

Need a list of times the capture events took place in the detectors:

Apply pre-delay and gate-width time �lters to simulate detector effects:

Slide Coincident-Capture-20 of 28

Using MCNPTools to Process Individual Histories (1)

Listing 3: Coincident Counting Python Example: Processing Histories
1 def process_ptrac_via_mcnptools (ptrac_fi le , history_f i l ter , t imes_f i l ter) :
2 """ Processing PTRAC file into a histogram of coincident counts using MCNPTools . """
3
4 fmt_to_mcnptools = {
5 " asci i " : Ptrac . ASC_PTRAC ,
6 " binary " : Ptrac . BIN_PTRAC ,
7 " hdf5 " : Ptrac . HDF5_PTRAC ,
8 }
9 count_histogram = np. array ([0])

10
11 # Open fi le and then read a chunk of 1000 histor ies
12 ptrac_handle = Ptrac (ptrac_f i le [" name"] , fmt_to_mcnptools [ptrac_f i le [" fmt "]])
13 ptrac_hists = ptrac_handle . ReadHistor ies (1000)
14 while ptrac_hists :
15
16 # Iterate through each individual history
17 for history in ptrac_hists :
18
19 # Call t ime fi l ter funct ion to get sorted list of capture times
20 t imes = f i l ter_history_t imes (history , history_f i l ter)
21
22 # Call histogram funct ion to process capture times
23 counts = histogram_t ime_gate (times , t imes_f i l ter)
24
25 # Accumulate history histogram into total histogram
26 extend = len (counts) - len (count_histogram)
27 if extend > 0:
28 extend_histogram = np. zeros (extend , dtype = int)
29 count_histogram = np. concatenate ((count_histogram , extend_histogram))
30 for icount , count in enumerate (counts) :
31 count_histogram [icount] += count
32
33 # Read next chunk of 1000 histor ies
34 ptrac_hists = ptrac_handle . ReadHistor ies (1000)
35
36 return count_histogram

Slide Coincident-Capture-21 of 28

Using MCNPTools to Process Individual Histories (2)

Listing 4: Coincident Counting Python Example: Cell/Isotope/Reaction Filtering
1 def f i l ter_history_t imes (history , history_f i l ter) :
2 """ Funct ion to process a single MCNPTools PTRAC history .
3 Returns a sorted list of react ion times .
4 """
5
6 number_events = history . GetNumEvents ()
7
8 t imes = list ()
9 for ievent in range (number_events) :

10 event = history . GetEvent (ievent)
11
12 if event .Type () == Ptrac .COL:
13 # Gather part ic le col l is ion cell , isotope , and react ion
14 cell = int (event .Get (Ptrac .CELL))
15 za = int (event .Get (Ptrac .ZAID))
16 rxn = int (event .Get (Ptrac .RXN))
17
18 # Fil ter all capture react ions within cells and isotopes
19 if (
20 cell in history_f i l ter [" cel ls "]
21 and za in history_f i l ter [" zas "]
22 and rxn in history_f i l ter [" rxns "]
23) :
24 t imes . append (event .Get (Ptrac .TIME))
25
26 return sorted (t imes)

Slide Coincident-Capture-22 of 28

Using Python h5py to Process All Histories (1)

Listing 5: Coincident Counting Python Example: Processing Histories
1 def process_ptrac_via_h5py (ptrac_fi le , history_f i l ter , t imes_f i l ter) :
2 """ Processing PTRAC file into a histogram of coincident counts using h5py . """
3
4 # Open HDF5 fi le and iterate over col l is ion group
5 if ptrac_f i le [" fmt "] != "hdf5 " :
6 logging . error ("HDF5 fi le required for h5py processing ")
7 ptrac_handle = h5py .File (ptrac_f i le [" name"] , " r ")
8 ptrac_group = ptrac_handle [" ptrack "]
9

10 # Call t ime fi l ter funct ion to get sorted list of capture times
11 t imes = f i l ter_history_t imes (ptrac_group , history_f i l ter)
12
13 # Call histogram funct ion to process capture times
14 count_histogram = histogram_t ime_gate (times , t imes_f i l ter)
15
16 return count_histogram

Slide Coincident-Capture-23 of 28

Using Python h5py to Process All Histories (2)

Listing 6: Coincident Counting Python Example: Cell/Isotope/Reaction Filtering
1 def f i l ter_history_t imes (group , history_f i l ter) :
2 """ Funct ion to process all histor ies in HDF5 col l is ion group .
3 Returns a sorted list of react ion times .
4 """
5
6 t imes = list ()
7 for event in group [" Col l is ion "][:] :
8
9 # Gather part ic le col l is ion cell , isotope , and react ion

10 cell = event [" cel l_id "]
11 za = event [" zaid "]
12 rxn = event [" react ion_type "]
13
14 # Fil ter all capture react ions within cel ls and isotopes
15 if (
16 cell in history_f i l ter [" cel ls "]
17 and za in history_f i l ter [" zas "]
18 and rxn in history_f i l ter [" rxns "]
19) :
20 t imes . append (event [" t ime "])
21
22 return sorted (t imes)

Slide Coincident-Capture-24 of 28

Running the Example (1)

I Executing MCNP6.3
> mcnp6 i=safeguards.inp n=sf_ptrac_mcnp63. tasks 8

I And then executing the provided Python script
> python ptrac_coinc.py.txt -i sf_ptrac_mcnp63.p.h5 -f hdf5 -o high_activity \

--cells 21 22 23 24 --isotopes 2003 --reactions 101 \
--predelay 500 --gatewidth 10000

MCNPTools Results h5py Results

Slide Coincident-Capture-25 of 28

Running the Example (2)

I The individual history processing ignores cross-history effects
I 1M histories simulated uniformly in 1s interval

Listing 7: Safeguards MCNP6.3 PTRAC Card
1 sdef tme=d1 pos =-5 0 0 par=sf
2 si1 0 1e8
3 sp1 0 1
4 fmult data =3 method =3 shift =1
5 nps 1e6

I Changing to a “lower” source activity, i.e., a larger 108 s time interval,
results in equivalent coincident capture count histograms

Slide Coincident-Capture-26 of 28

Summary

Slide Coincident-Capture-27 of 28

Summary of New PTRACCapabilities and Work�ows

I The PTRACcapability in MCNP6.3 has seen a massive overhaul since
MCNP6.2

I The new HDF5 �le format allows for both MPI- and thread-based
parallelism

I MCNPTools has been updated to handle the new HDF5 PTRACformat
and is now open-sourced on GitHub

I Built-in capabilities, such as the pulse-height tally coincident capture
special treatment, can largely be replicated through separate
postprocesing scripts that leverage both PTRACand MCNPTools
I Allows for greater �exibility in user-speci�ed and controlled detector

response functionality, ultimately using the MCNP code for what it is
best at (i.e. particle transport)

I Look at the MCNP6.3 User Manual [2] and S. Bolding's presentation at
the 2021 MCNP User Symposium [3] for more information on the new
HDF5 PTRACformat and capabilities

Slide Coincident-Capture-28 of 28

Questions?

Slide Coincident-Capture-A-1 of 2

Backup Slides

Slide Coincident-Capture-A-2 of 2

References

[1] M. T. Andrews, C. R. Bates, E. A. Mckigney, A. D. Mullen, S. F. Woldegiorgis,
M. E. Rising, M. J. Marcath, and A. Sood, “DRiFT - RELEASE 1.0.0 ORGANIC
SCINTILLATORS,” Tech. Rep. LA-UR-21-29114, Los Alamos National
Laboratory, Sept. 2021.

[2] J. A. Kulesza, T. R. Adams, J. C. Armstrong, S. R. Bolding, F. B. Brown, J. S.
Bull, T. P. Burke, A. R. Clark, R. A. Forster, III, J. F. Giron, A. S. Grieve, C. J.
Josey, R. L. Martz, G. W. McKinney, E. J. Pearson, M. E. Rising, C. J. Solomon,
Jr., S. Swaminarayan, T. J. Trahan, S. C. Wilson, and A. J. Zukaitis, “MCNP®

Code Version 6.3.0 Theory & User Manual,” Tech. Rep. LA-UR-22-30006, Rev.
1, Los Alamos National Laboratory, Los Alamos, NM, USA, Sept. 2022.

[3] S. R. Bolding, J. A. Kulesza, M. J. Marcath, and M. E. Rising, “Particle Track
Output (PTRAC) Improvements, Parallelism, and Post-Processing,” Tech. Rep.
LA-UR-21-26562, Los Alamos National Laboratory, Aug. 2021.

	Motivation
	PTRAC Updates: Features and Format

